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Summary

To test the hypothesis that the frequencies of normal
alleles (ANs) with a relatively large number of CAG
repeats (large ANs) are related to the prevalences of the
dominant spinocerebellar ataxias (SCAs)—SCA types 1,
2, 3 (Machado-Joseph disease), 6, and dentatorubral-
pallidoluysian atrophy (DRPLA)—we investigated the
relative prevalences of these diseases in 202 Japanese
and 177 Caucasian families and distributions of the
number of CAG repeats of ANs at these disease loci in
normal individuals in each population. The relative
prevalences of SCA1 and SCA2 were significantly higher
in Caucasian pedigrees (15% and 14%, respectively)
than in Japanese pedigrees (3% and 5%, respectively),
corresponding to the observation that the frequencies of
large ANs of SCA1 (alleles 130 repeats) and of SCA2
(alleles 122 repeats) were significantly higher in Cau-
casians than in Japanese. The relative prevalences of
MJD/SCA3, SCA6, and DRPLA were significantly
higher in Japanese pedigrees (43%, 11%, and 20%, re-
spectively) than in Caucasian pedigrees (30%, 5%, and
0%, respectively), corresponding to the observation that
the frequencies of large ANs of MJD/SCA3 (127 re-
peats), SCA6 (113 repeats), and DRPLA (117 repeats)
were significantly higher in Japanese than in Caucasians.
The close correlations of the relative prevalences of the
dominant SCAs with the distributions of large ANs
strongly support the assumption that large ANs con-
tribute to generation of expanded alleles (AEs) and the
relative prevalences of the dominant SCAs.
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Introduction

Dominantly inherited spinocerebellar ataxias (SCAs) are
a group of heterogeneous neurodegenerative diseases
that are characterized by chronic progressive cerebellar
ataxia associated with various combinations of other
neurological signs (Harding 1982). Although classifi-
cation of dominant SCAs on the basis of clinical pre-
sentation has been quite controversial, because of the
overlap in clinical presentations among these SCAs,
identification of the causative genes for SCA type 1
(SCA1 [MIM 164400]) (Orr et al. 1993), SCA type 2
(SCA2 [MIM 183090]) (Imbert et al. 1996; Pulst et al.
1996; Sanpei et al. 1996), Machado-Joseph disease/SCA
type 3 (MJD/SCA3 [MIM 109150]) (Kawaguchi et al.
1994), SCA type 6 (SCA6 [MIM 183086]) (Zhuchenko
et al. 1997), SCA type 7 (SCA7 [MIM 164500]) (David
et al. 1997), and dentatorubral-pallidoluysian atrophy
(DRPLA [MIM 125370]) (Koide et al. 1994; Nagafuchi
et al. 1994) has enabled the classification of dominant
SCAs on the basis of molecular diagnosis. In all these
disease types, the causative mutations cause expansion
of in the number of CAG repeats in the coding region
of the corresponding genes. The CAG repeats are gen-
erally polymorphic in normal alleles (ANs) of X40 re-
peats, whereas they usually are 140 repeats in expanded
alleles (AEs).

Recent studies suggest that the prevalences of these
dominant SCAs are considerably different among dif-
ferent populations (Illarioshkin et al. 1996; Cancel et al.
1997; Geschwind et al. 1997; Lorenzetti et al. 1997).
DRPLA and SCA6 seem to be less prevalent in Caucasian
populations than in the Japanese population (Silveria et
al. 1996; Ikeuchi et al. 1997; Ishikawa et al. 1997; Riess
et al. 1997; Stevanin et al. 1997a). The molecular basis
for the differences in the prevalences of these dominant
SCAs, however, is not fully understood.

In Huntington disease (HD), another neurodegener-
ative disease caused by CAG-repeat expansion (The
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Huntington’s Disease Collaborative Research Group
1993), new AEs have been demonstrated to arise from
ANs with CAG-repeat number that is in the high range
for normal individuals but that is lower than the range
seen in affected individuals (this category has been
termed “intermediate alleles” [IA]) (Goldberg et al.
1993; Myers et al. 1993). Haplotype analyses have dem-
onstrated that the majority of these AIs share the same
haplotypes as those of AEs in Caucasian populations
(The Huntington’s Disease Collaborative Research
Group 1993; Squitier et al. 1994), suggesting that these
IAs serve as a reservoir for the generation of new AEs
and that the frequencies of IAs in various ethnic pop-
ulations contribute to the variations in the prevalence
of HD in the corresponding populations (Squitier et al.
1994).

In regard to dominant SCAs, there is no documen-
tation of the generation of AEs from ANs, making the
definition of IAs difficult. Strong linkage disequilibria,
however, have been demonstrated in AEs of SCA1 (Wak-
isaka et al. 1995), SCA2 (Hernandez et al. 1995), MJD/
SCA3 (Stevanin et al. 1995;Takiyama et al. 1995; Endo
et al. 1996), and DRPLA (Yanagisawa et al. 1996), in
particular populations. Furthermore, in French MJD/
SCA3 families, a close association has been observed
between AEs and a particular haplotype that was also
found in all ANs with 133 repeats (Stevanin et al.
1997b). In Japanese DRPLA patients, a particular hap-
lotype has been found to be associated with AEs that
was also exclusively associated with ANs with 117 CAG
repeats (Yanagisawa et al. 1996). These results strongly
suggest that AEs of the dominant SCAs are also gen-
erated from IAs associated with particular haplotypes
and that the prevalences of the dominant SCAs in in-
dividual populations correlate with the frequencies of
IAs of the corresponding genes. In support of this as-
sumption, ANs with 117 repeats in the DRPLA gene
have been described as being overrepresented in the Jap-
anese population versus Caucasian populations (Burke
et al. 1994; Deka et al. 1995).

With this background, we determined the relative
prevalences of the dominant SCAs in large population-
based data sets of Japanese and Caucasian pedigrees,
analyzed the distribution of the sizes of ANs of the cor-
responding genes in both populations, and found that
the relative prevalences of the dominant SCAs in Japa-
nese and Caucasian populations are strongly correlated
with the frequencies of AN that have a relatively large
number of repeats (large ANs) in the causative genes.

Families, Material, and Methods

Pedigrees with Dominant SCAs

Japanese pedigrees with dominant SCAs who were
referred to the Department of Neurology of the Brain

Research Institute at Niigata University between April
1993 and March 1997 were included on a consecutive
basis, and Caucasian pedigrees with dominant SCAs
who were referred to INSERM U289, Hôpital de la Sal-
pêtrière, or Baylor College of Medicine between May
1990 and March 1997 were included on a consecutive
basis. Families of northern African, Middle Eastern, and
Hispanic origins were not included among the Caucasian
pedigrees. These pedigrees were referred to these labo-
ratories for molecular diagnosis of SCAs. Pedigrees were
considered to have dominant SCAs when affected in-
dividuals with ataxia were observed in at least two
generations.

Analysis of Number of CAG Repeats

Genomic DNAs were extracted from peripheral blood
leukocytes by a standard procedure. Molecular diagnosis
was performed to estimate the number of CAG repeats
at five disease loci corresponding to SCA1, SCA2, MJD/
SCA3, SCA6, and DRPLA, according to methods de-
scribed elsewhere (Orr et al. 1993; Kawaguchi et al.
1994; Koide et al. 1994; Sanpei et al. 1996; Ikeuchi et
al. 1997). The distributions of the numbers of CAG re-
peats in ANs at the five loci in unrelated Japanese and
Caucasian individuals were determined. For Japanese
normal chromosomes, 176 SCA1 loci, 359 SCA2 loci,
275 MJD/SCA3 loci, 327 SCA6 loci, and 307 DRPLA
loci were typed, whereas, for Caucasian normal chro-
mosomes, 574 SCA1 loci, 355 SCA2 loci, 641 MJD/
SCA3 loci, 303 SCA6, and 156 DRPLA loci were typed.

Statistical Analyses

All statistical analyses were performed by means of
SPSS version 3.0. Means, variances, ranges, and skew-
ness were determined for the distributions of ANs at the
five loci, in Japanese and Caucasian individuals. Differ-
ences, both in the relative prevalences of the dominant
SCAs and in the frequencies of the large ANs, between
the Japanese pedigrees and the Caucasian pedigrees,
were analyzed by means of the x2 test with Yates’s cor-
rection, for each of the dominant SCAs. Differences be-
tween the mean sizes of ANs in the two populations
were analyzed by means of the Mann-Whitney rank test.
The null hypothesis was rejected at .P ! .05

Results

Relative Prevalences of Dominant SCAs in Japanese
and Caucasian Populations

We identified a total of 202 Japanese and 177 Cau-
casian families with dominant SCA. The relative prev-
alences are summarized in figure 1. The relative preva-
lences of SCA1 and SCA2 were higher in Caucasian
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Figure 1 Prevalences of dominant SCAs in 202 Japanese and
177 Caucasian families (also see the Appendix).

pedigrees (15% and 14%, respectively) than in Japanese
pedigrees (3% and 5%, respectively), and the differences
were statistically significant (SCA1— ,2x � 13.58 df �
, ; SCA2— , , ).21 P � .0002 x � 8.41 df � 1 P � .0037

The relative prevalences of MJD/SCA3, SCA6, and
DRPLA were higher in Japanese pedigrees (43%, 11%,
and 20%, respectively) than in Caucasian pedigrees
(30%, 5%, and 0%, respectively), and the differences
were statistically significant (MJD/SCA3— ,2x � 5.05

, ; SCA6— , , ;2df � 1 P � .024 x � 5.05 df � 1 P � .015
DRPLA— , , ).2x � 38.21 df � 1 P ! .0001

Close Association between Frequencies of Large ANs
and Relative Prevalences of Dominant SCAs, in
Japanese and Caucasian Populations

The distributions of the various sizes of ANs are
shown in figure 2. The mean sizes of ANs at the SCA1
and SCA2 loci were significantly larger in Caucasians
than in Japanese (SCA1, ; SCA2, ) .P ! .0001 P ! .0001
Mean sizes of ANs at MJD/SCA3, SCA6, and DRPLA
loci were larger in Japanese than in Caucasians but were
significantly larger only for SCA6 ( ), not forP ! .0001
MJD/SCA3 ( ) and DRPLA ( ).P � .0757 P � .0795

To perform statistical analyses of the differences, be-
tween Japanese and Caucasian populations, in the fre-
quencies of ANs larger than the majority of ANs, we
defined large ANs as those that correspond to
∼5%–10% of the upper tails (see the Appendix). The
frequencies of large ANs in SCA1 (ANs 130 repeats)
and SCA2 (ANs 122 repeats) were significantly higher
in Caucasians than in Japanese (SCA1— ,2x � 22.23

, ; SCA2— , ,2df � 1 P ! .0001 x � 14.84 df � 1 P �
) (Appendix). Cutoff values of 31 or 32 repeats.0001

for SCA1 and of 23 or 24 repeats for SCA2 also resulted
in significantly higher frequencies of large ANs of SCA1
and SCA2 genes in Caucasian populations than in the
Japanese population (see the Appendix). These results

were in good accordance with the relatively higher prev-
alences of SCA1 and SCA2 in Caucasians than in
Japanese.

The frequencies of large ANs in MJD/SCA3 (ANs 127
repeats), SCA6 (ANs 113 repeats), and DRPLA (ANs
117 repeats) genes were significantly higher in Japanese
than in Caucasians (MJD/SCA3— , ,2x � 24.16 df � 1

; SCA6— , , ;2P ! .0001 x � 38.64 df � 1 P ! .0001
DRPLA— , , ). Other cutoff2x � 11.80 df � 1 P � .0006
values—28, 29, 30, or 31 repeats for MJD/SCA3; 14 or
15 repeats for SCA6; and 18, 19, 20, or 21 repeats for
DRPLA—gave similarly significant differences (see the
Appendix). These results are also in accordance with the
relatively higher prevalences of MJD/SCA3, SCA6, and
DRPLA in Japanese than in Caucasians.

Discussion

Prevalences of Dominant SCAs

The present study of our large population-based data
sets clearly demonstrates marked differences, in the rel-
ative prevalences of the dominant SCAs, between Jap-
anese pedigrees and Caucasian pedigrees. As has been
estimated elsewhere (Burke et al. 1994; Deka et al.
1995), DRPLA was frequent in the Japanese pedigrees
that we studied but was not observed in the Caucasian
pedigrees. MJD/SCA3 and SCA6 were also more prev-
alent in Japanese pedigrees than in Caucasian pedigrees.
On the other hand, SCA1 and SCA2 were more prev-
alent in Caucasian pedigrees than in Japanese pedigrees.
MJD/SCA3 was the most prevalent type of dominant
SCA in both populations, a finding that is consistent
with previous reports of Caucasian populations (Ranum
et al. 1995; Schols et al. 1995; Dürr et al. 1996). It
should be noted that the causative genes were unknown
for ∼20%–40% of dominant SCAs (fig. 1), which may
include SCA4 (Flanigan et al. 1996) and SCA5 (Ranum
et al. 1994). Since the gene for SCA7 has only very
recently been identified (David et al. 1997), the analysis
of SCA7 could not be performed.

Prevalences of Dominant SCAs and Frequencies of
Large ANs

In the present study, we found a close association be-
tween the relative prevalences of the dominant SCAs in
Japanese and Caucasian pedigrees and the frequencies
of large ANs of the corresponding genes. The results
suggest that the relative prevalences of these dominant
SCAs are determined by the balance between continuous
generation of new AEs and loss of AEs that is due to
the impaired reproductive fitness of severely affected pa-
tients. Recent studies of the frequencies of mutation of
ANs, of both the HD gene and the androgen-receptor
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Figure 2 Distribution of various numbers of CAG repeats in ANs at SCA1, SCA2, MJD/SCA3, SCA6, and DRPLA loci, in Japanese and
Caucasian populations. Vertical axes represent allele frequency, and horizontal axes represent number of CAG-repeat units. Distributions of
sizes of ANs in Japanese were significantly different than those in Caucasians, as determined by x2-fit test, at all the loci (SCA1— 2x �

, , ; SCA2— , , ; MJD/SCA3— , , ; SCA6— ,2 2 2308.79 df � 19 P ! .0001 x � 51.73 df � 10 P ! .0001 x � 207.15 df � 23 P ! .0001 x � 70.08 df �
, ; DRPLA— , , ). There were no overlaps between the number of CAG repeats in ANs and that in AEs.213 P ! .0001 x � 89.35 df � 26 P ! .0001

gene, by sperm typing, have revealed that the rates of
expansion mutations increase depending on the sizes of
ANs (Leeflang et al. 1995; Zhang et al. 1995). A large
normal-repeat HD allele (30 repeats) showed 9% ex-
pansion- and 3% contraction-mutation frequencies
(Leeflang et al. 1995). Therefore, some of the large ANs
can stochastically undergo expansion mutation to pro-
duce the new AEs of the dominant SCAs. Although new
mutations arising from CAG repeats within the normal

range have not been described in dominant SCAs, the
present results strongly support the assumption that new
mutations arise from the large ANs. Recent observations
that particular haplotypes of large ANs of MJD/SCA3
and DRPLA genes are commonly shared with MJD/
SCA3 (Stevanin et al. 1997b) and DRPLA (Yanagisawa
et al. 1996) patients, respectively, strongly suggest that
large ANs with particular haplotypes are particularly
prone to further expansion, to the disease range of CAG



1064 Am. J. Hum. Genet. 63:1060–1066, 1998

repeats; in other words, being at the “large” end of the
spectrum is necessary but not sufficient to be a disease-
producing IAs. Such an argument is further supported
by observations in the HD gene (Goldberg et al. 1995;
Chong et al. 1997).

Implications of AN Distribution

It remains unknown why there are differences in the
distributions of the sizes of ANs and in the frequencies
of large ANs among populations. The differences may
simply represent founder effects. However, the distri-
butions of the various numbers of CAG repeats are likely
to be in a dynamic state depending on the mutation
frequencies of the CAG repeats of the corresponding
genes. Interestingly, skewness of the distribution of the
sizes of ANs was clearly inverted, in SCA1 and SCA2
loci, between Japanese and Caucasians. It has recently
been reported that directional mutational bias at the
repeat locus contributes to the skewness of the size dis-
tribution (Rubinsztein et al. 1994). Different mutational
biases among the populations may represent differences
in possible cis-elements governing the mutations at these
CAG loci, as suggested by the study of HD (Squitier et
al. 1994; Goldberg et al. 1995). The existence of such
cis-elements affecting intergenerational repeat instability
has recently been suggested, in the study of androgen-
receptor YAC transgenic mice carrying CAG45 (La Spada
et al. 1998).
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Appendix

Comparison of Frequencies, of Large AN Genes of Dom-
inant SCAs, in Japanese and Caucasians

In the following list, the only Japanese/Caucasian fre-
quency difference that is not statistically significant is
.01/.03—for SCA2 when the number of repeats is 123.

SCA1 SCA2 MJD/SCA3 SCA6 DRPLA

Frequencies of Large ANs in Japanese/Frequencies of Large ANs in Caucasians, When No. of Repeats for Large AN �

130 122 127 113 117
.09/.26

(x2 � 22.23,
)P ! .0001

.01/.12
( ,2x � 14.84

)P � .0001

.21/.09
( ,2x � 24.16

)P ! .0001

.20/.04
( ,2x � 38.64

)P ! .0001

.24/.10
( ,2x � 11.80

)P � .0006
131 123 128 114 118

.04/.16
( ,2x � 16.72

)P ! .0001

.01/.03
( ,2x � 3.65

)P � .056

.11/.04
( ,2x � 17.60

)P ! .0001

.08/.00
( ,2x � 24.16

)P ! .0001

.13/.06
( ,2x � 5.42

)P � .0199
132 124 129 119

.01/.04
( ,2x � 6.88

)P � .0087

.00/.03
( ,2x � 5.05

)P � .0246

.07/.02
( ,2x � 10.40

)P � .013

.10/.03
( ,2x � 6.88

)P � .0087
130 120

.05/.01
( ,2x � 7.03

)P � .0080

.08/.01
( ,2x � 9.62

)P � .0019
131 121

.05/.01
( ,2x � 10.27

)P � .0014

.06/.00
( ,2x � 8.02

)P � .0046
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